A SECOND-ORDER REACTION ON A GAS CHROMATOGRAPHIC COLUMN
 I. COMPUTATIONAL ANALYSIS BY THE PLATE THEORY

L. G. HARRISON AND Y. KOGA

Department of Chemistry, The University of British Columbia, Vancouver 8, B.C. (Canada)
AND
P. MADDEROM

Computing Centre, The University of British Columbia, Vancouver 8, B.C. (Canada)
(Received June 16 th, 1970)

SUMMARY
Plate theory is used to compute the behaviour of a system in which a reversible bimolecular reaction $A+C \rightleftharpoons 2 B$ is occurring during the passage of a mixture of A, B and C through a gas chromatographic column. An apparent equilibrium constant calculated from the elution profile will usually be much less than the true equilibrium constant. Curves are presented showing in detail how the apparent equilibrium constant and centre band width in the elution profile vary with feed pulse volume and with flow rate.

INTRODUCTION

Reaction on agas chromatographic column has drawn wide attention in theory and in practice. As reactors, chromatographic columns have an entirely different character from ordinary steady flow reactors. Sometimes the conversion becomes much higher than expected from the equilibrium constant, which is understood easily since reactants and products are separated as they flow through a chromatographic reactor. Dehydrogenation reactions are among the best examples of this, since the hydrogen liberated usually has less affinity for a column and flows faster than the reactant and the other product. Indeed patents ${ }^{1-3}$ have been awarded for this type of reactor.

Various theoretical treatments ${ }^{4-10}$ have been developed, for various types of reactions on chromatographic columns, treating the extent of conversion, the elution curve profile, the effect of the shape of the feed pulse, and so forth. These treatments, however, neglect the band-broadening caused by diffusion and other non-idealities in chromatographic behaviour.

Kocirik ${ }^{11}$ applied rate theory ${ }^{12}$ to take band broadening into account for the case of a first order reaction. If, however, a reaction with a rate law more complicated than first order is to be considered, application of rate theory results in too complicated
a mathematics to be solved analytically, and too many adjustable parameters (such as diffusion constant, mass transfer coefficient, and fractions of volumes of mobile and stationary phases, besides reaction rate constants) when a numerical solution is attempted.

We therefore wish to report the results of applying the plate theory ${ }^{12-15}$ to reactions of the type $A+C \rightleftharpoons 2 B$ on a chromatographic column. The plate theory has been criticised ${ }^{10}$ because of the obscurity of its relationship to physical mechanisms. But it is very useful in a study in which the mechanisms of band broadening are not going to be analysed in detail, because it expresses broadening in terms of a single parameter, the number of theoretical plates. The theory also leads to economical computer programmes, which proved convenient in varying parameters to match the experimental results reported in Part II ${ }^{17}$.

METHOD OF ANALYSIS

In taking the material balance at the i-th plate in a conventional manner, the rate of production of components A, B and C is included. If we assume that the reaction $A+C \rightleftharpoons 2 B$ occurs in the stationary phase, and that the rates may be expressed as those of a bimolecular reversible process, the material balances become,

$$
\begin{align*}
& \left(V_{G}+K_{A} V_{L}\right)\left(\mathrm{d} A_{t} / \mathrm{d} t\right)=w\left(A_{i-1}-A_{i}\right)+k_{0}\left(B_{\imath}^{2}-K_{e} A_{t} C_{t}\right) \\
& \left(V_{G}+K_{B} V_{L}\right)\left(\mathrm{d} B_{t} / \mathrm{d} t\right)=w\left(B_{t-1}-B_{i}\right)-2 k_{0}\left(B_{t}^{2}-K_{e} A_{i} C_{t}\right) \\
& \left(V_{G}+K_{C} V_{L}\right)\left(\mathrm{d} C_{t} / \mathrm{d} t\right)=w\left(C_{t-1}-C_{t}\right)+k_{0}\left(B_{i}^{2}-K_{e} A_{i} C_{i}\right) \tag{I}
\end{align*}
$$

where:
$A_{i}, B_{i}, C_{i}=$ concentrations of components in stationary phase of i-th plate
$V_{G}, V_{L}=$ volumes of mobile (gaseous) and stationary (liquid) phase in a plate
$K_{A}, K_{B}, K_{C}=$ partition coefficients of components between mobile and stationary phases
$w=$ volume rate of flow of carrier gas
$K_{e}=$ equilibrium constant for the reaction $\mathrm{A}+\mathrm{C} \rightleftharpoons 2 \mathrm{~B}$ in the mobile phase
$k_{0}=V_{L} k K_{B}{ }^{2}$, where k is the second-order rate constant in the stationary phase
For the first plate $(i=1), A_{0}, B_{0}$ and C_{0} appear in eqns. I. These designate concentrations in the feed pulse.

Experimentally, retention volumes $V_{R A}, V_{R B}$ and $V_{R C}$ for the three separate components can be found either by feeding each component separately or, if practicable, by choosing conditions so that k_{0} is negligibly small. (The retention volumes are to be understood as those measured when the feed pulse V_{0} is small compared to the retention volume.) Then the number of theoretical plates, n, and hence $V_{G}+K_{A} V_{L}$, etc., can be calculated by $n=16 V_{R A}^{2} /(\text { band width })_{A}^{2}$ and $n\left(V_{G}+K_{A} V_{L}\right)=V_{R A}$ and similar equations with subscripts B and C replacing A.

The numerical solution of eqns. I was computed with an IBM 7044 computer under the following conditions:

$$
\begin{array}{ll}
t \leq 0: & A_{t}=B_{t}=C_{t}=0 \text { for } o \leq i \leq n \\
0 \leq t \leq t_{0}: & A_{0}=A_{0}^{0} \varphi(t) ; B_{0}=B_{0}{ }^{0} \varphi(t) ; C_{0}=C_{0}{ }^{0} \varphi(t) \\
t>t_{0}: & A_{0}=B_{0}=C_{0}=0
\end{array}
$$

J. Chromalog., 52 (1970) $3^{\mathrm{r}-38}$
where $\varphi(t)$ is a step function, but with infinities at the steps avoided by rounding off in an arbitrary manner, for which purpose a cosine curve was used:

$$
\begin{array}{ll}
\mathrm{o} \leq t \leq z t_{0}: & \varphi=0.5\left[\mathrm{I}-\cos \left(\pi t / z t_{0}\right)\right] \\
z t_{0} \leq t \leq(\mathrm{I}-z) t_{0}: \varphi=\mathrm{I} \\
(\mathrm{I}-z) t_{0} \leq t \leq t_{0}: \quad \varphi=0.5\left[\mathrm{I}+\cos \left\{\pi\left(t-t_{0}+z t_{0}\right) / z t_{0}\right\}\right]
\end{array}
$$

The arbitrary width z was taken to be 0.05 .
For a finite reaction rate, eqns. I were solved by the method of Hamming ${ }^{18}$. For an infinite reaction rate, a treatment similar to Magee's for instantaneous reactions ${ }^{\mathbf{8}}$ was applied. Instead of eqns. I , the following equations have to be solved:

$$
\begin{align*}
& \left(V_{G}+K_{A} V_{L}\right)\left(\mathrm{d} A_{i} / \mathrm{d} V\right)=\left(A_{i-1}-A_{t}\right)+\delta_{t} \\
& \left(V_{G}+K_{B} V_{L}\right)\left(\mathrm{d} B_{i} / \mathrm{d} V\right)=\left(B_{i-1}-B_{t}\right)-2 \delta_{t} \\
& \left(V_{G}+K_{C} V L\right)\left(\mathrm{d} C_{i} / \mathrm{d} V\right)=\left(C_{i-1}-C_{i}\right)+\delta_{i} \\
& B_{i}{ }^{2} / A_{i} C_{i}=K_{e} \tag{2}
\end{align*}
$$

where $\mathrm{d} V=w \mathrm{~d} t$, the volume of carrier gas passing through a plate in time $\mathrm{d} t$, and δ_{t} is the amount of conversion required to establish the equilibrium instantaneously. Eqns. 2 were also solved numerically with the IBM 7044 computer.

In the numerical work, concentrations can be expressed in terms of an arbitrary concentration unit, provided that k_{0} is related to that same unit. The feed pulse was assumed to contain an equilibrium mixture of the components, and the value (IOO) chosen for the equilibrium constant was close to experimentally attainable values for the reaction $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{IBr}(\mathrm{g})$.

Values chosen for parameters arose from preliminary work on the $\mathrm{Br}_{2}-\mathrm{IBr}-\mathrm{I}_{2}$ system, but are mostly somewhat different from the values required in Part II. They are:

$$
\begin{aligned}
& A_{0} 0=C_{0}{ }^{0}=1.0 \text { conc. unit, and } K_{e}=100, \text { hence } B_{0}{ }^{0}=10.0 \text { conc. unit } \\
& V_{R A}=54.0 \mathrm{ml} ; V_{R B}=74.8 \mathrm{ml} ; V_{R C}=108.0 \mathrm{ml}
\end{aligned}
$$

Fig. I. A typical computed elution profile ($\mathrm{A}+\mathrm{B}+\mathrm{C}$), with dotted lines showing the contributions from the separate components. M_{1} and M_{2} are minima used in calculating $K_{\text {eff }}{ }^{*} W^{*}$ is the centre band width from tangents at inflection points. $n=200 ; K_{e}=100 ; V_{0}=0.5 \mathrm{ml}=$ $0.0136 V_{n I} ; h_{0}=200 \mathrm{ml} \mathrm{min}^{-1}$ (conc. unit) ${ }^{-1} ; w=76 \mathrm{ml} / \mathrm{min}$. From the profile, $K_{\mathrm{ctt}}=2.94$ and $K_{\text {erf* }}=9.01$.

Fig. 2. Variation of apparent equilibrium constant $K_{\text {ofy }}$ with feed pulse volume V_{0}. Numbers on curves are values of reaction rate parameter k_{0}, n, w and K_{e} are the same as in Fig. I.
Fig. 3. The same as Fig. 2, for K_{off} * instead of $K_{\text {eff }}$.

Fig. 4. Centre band width W^{*} against feed pulse volume V_{0}. Numbers on curves are values of h_{0}. Points marked P correspond to minima in Fig. 2. The dotted line is the locus of P (essentially constant $\left.W^{*}\right), n, w$ and K_{e} are the same as in the previous figures.

Fig. 5. Centre band height against feed pulse volume V_{0} for various k_{0} (numbers on curves). n, w and K_{c} are the same as in the previous figures.
J. Chromatog., 52 (1970) 3^{1-38}
$V_{R I}=n V_{G}=36.8 \mathrm{ml}=$ retention volume of a component which has no affinity with the stationary phase (zero partition coefficient); in practice, this was regarded as being the same as the retention volume of air, designated $V_{R A I R}$.

```
\(n=200\)
\(w=30.0,76.0,120.0 \mathrm{ml} / \mathrm{min}\)
\(V_{0}=w t_{0}=0.5\) to 20 ml
\(k_{0}=5\), 10, 50 , roo, \(200 \mathrm{ml} \mathrm{min}^{-1}\) (conc. unit) \({ }^{-1}\)
```


Fig. 6. Apparent equilibrium constants $K_{\text {off }}$ and $K_{\text {eft }}{ }^{*}$ against flow rate for a low reaction rate, $k_{0}=10 \mathrm{ml} \mathrm{min}^{-1}$ (conc. unit) ${ }^{-1} \cdot V_{0} / V_{n I}=0.272 ; n$ and K_{n} are the same as in the previous figures. Fig. 7. $K_{\text {off }}$ against centre band width W^{*} for various k_{0} (numbers on curves). n, W and K_{c} are the same as in Figs. I-5.

A typical computed elution profile is shown in Fig. I. To describe the behaviour of the system the following quantities were chosen:

$$
\begin{aligned}
& K_{\mathrm{eff}}=\left[\int_{0}^{\infty} B(t) \mathrm{d} t\right]^{2} /\left[\int_{0}^{\infty} A(t) \mathrm{d} t \int_{0}^{\infty} C(t) \mathrm{d} t\right] \\
& K_{\mathrm{erf}^{*}}=\left[\int_{M_{1}}^{M_{2}}(A+B+C) \mathrm{d} t\right]^{2} /\left[\int_{0}^{M_{1}}(A+B+C) \mathrm{d} t \int_{M_{2}}^{\infty}(A+B+C) \mathrm{d} t\right]
\end{aligned}
$$

where:
M_{1} and M_{2} are minima in the elution profile, as marked in Fig. I;
$W^{*}=$ band width parameter $=$ distance in volume units between intersections of tangents at the inflection points of the centre band of the profile with the horizontal axis;
$K_{\text {eff }}$ is an apparent equilibrium constant related to the actual total amounts of A, B and C in the eluted material; but it is not accessible to experimental measurement, because of band overlap in the elution profile;
$K_{\text {erf }}{ }^{*}$ is a parameter which can be calculated from an experimental;elution

$$
\text { J. Chromatog., } 52 \text { (1970) } 3 \mathrm{r}-38
$$

Fig. 8. The same as Fig. 7, for $K_{\text {erf }}{ }^{*}$ instead of $K_{\text {err }}$.
profile; it should normally have a value similar to $K_{\text {eff, }}$ but is not precisely related to total amounts of A, B and C.

Results of computations are displayed in Figs. 2-8.

dIscussion

Chromatographic separation must slow down the combination of A and C relative to the decomposition of B; thus $K_{\text {erf }}$ and $K_{\text {erf }}{ }^{*}$ are always less than the true equilibrium constant K_{e}. The precise value of $K_{\text {eff }}$ can be thought of as depending on two factors, which sometimes compete with each other so that, for example, $K_{\text {eff }}$ passes through a minimum as V_{0} is varied at constant k_{0}. These two factors are: (a) The reaction rate term, which increases both with the rate parameter k_{0} and with the concentration term at any plate ($B_{i}{ }^{2}-K_{e} A_{i} C_{i}$). A higher reaction rate term tends to decrease $K_{\text {eff }}$. (In Fig. 2, for any constant $V_{0}, K_{\text {eff }}$ becomes smaller as k_{0} increases.) (b) The degree of overlapping of the two peaks. Clearly, greater overlapping tends to bring $K_{\text {eft }}$ closer to the true K_{e}.

When the feed pulse volume V_{0} is increased, both the concentrations at any plate and the overlapping become larger. At low V_{0} the concentration effect is dominant, and at high V_{0} the overlapping effect. This occurs because, as discussed by van Deemter et al. ${ }^{12}$, the concentration of any single component (e.g. A) increases linearly with V_{0} up to $V_{0} n t / V_{R A} \sim I$, and thereafter increases more slowly (compare Fig. 5, showing centre band height against V_{0}); whereas the band width increases slowly at the beginning, but linearly above $V_{0} n^{\ddagger} / V_{R A} \sim 2.5$.

Hence each curve of $K_{\text {eff }}$ against V_{0} in Fig. 2 has a minimum, except that for $k_{0}=\infty$. In that case, the reaction is completed at each plate no matter how small the concentrations are. The curve displays the overlapping effect by itself, and $K_{\text {eff }}$ increases monotonically with V_{0}.

The band width parameter W^{*} (Fig. 4) depends chiefly on the component B, but is larger than the true band width of B because of overlapping (Fig. I). At any constant V_{0}, W^{*} increases with reaction rate parameter k_{0}. This is because the increasingly rapid production of A and C from B causes the overlapping to become worse ; in terms of band shape, the A and C bands (Fig. I) become asymmetric, with "tails" pointing towards the centre band.

A curve of W^{*} against V_{0} for constant h_{0} (Fig. 4) seems to be divisible into two parts: an initial rapid increase, with strong curvature, followed by a slower, more nearly linear increase. This is best seen at $k_{0}=10,50$ or 200 . The transition between the two regions lies roughly at the point marked P on some of the curves in Fig. 4; this is the point at which $K_{\text {epp }}$ has its minimum value (Fig. 2). Up to the point P, $K_{\text {eff }}$ decreases as V_{0} rises, which means that the peaks for \mathbf{A} and C are increasing relative to B, so that their tails are contributing increasingly to W^{*}. Beyond the point P, this effect is reversed; the A and C peaks thereafter contribute successively less and less to the centre peak, and W^{*} increases less rapidly than in the case of symmetrical bands, $k_{0}=0$.

It is interesting that the points P, for a wide range of k_{0} values, lie at roughly the same W^{*}; thus the importance of extent of overlapping in the dependence of $K_{\text {eff }}$ on V_{0} can be seen in a surprisingly simple way, in relation to band width.

The flow rate dependence of $K_{\text {epp }}$ is shown in Fig. 6. Clearly, a higher flow rate gives less time for reaction to occur, and $K_{\text {eff }}$ rises with the flow rate. This effect becomes smaller as reaction rate increases and ultimately, for instantaneous reaction $\left(k_{0}=\infty\right), K_{\text {epp }}$ does not depend on flow rate.

In the last two diagrams (Figs. 7 and 8) $K_{\text {eff }}$ and $K_{\text {eff }}{ }^{*}$ are plotted against W^{*}. These diagrams are useful in practice because W^{*} is easily evaluated from the chromatogram, whereas the feed pulse volume V_{0}, used as independent variable in Figs. 2 and 3 , is rather difficult to evaluate experimentally because, for example, the kinetics of evaporation of a liquid sample in the injector are not known.

ACKNOWLEDGEMENTS

We wish to thank the National Research Council of Canada for an operating grant and for the complete financial support of the computing facilities. One of us (Y.K.) wishes to thank the Isaak Walton Killam Memorial Fund and the University of British Columbia for scholarships.

REFERENCES

I J. A. Dinwiddie(to Esso Research and Enginearing Co.), U.S. Pat., 3, 243, 472 (March 29, 1966).
2 J. A. Dinwiddie and W. A. Moynn (to İsso Research ancl Engineering Co.). U.S. Pat., 2, 976, 132 (March 21, 1961).
3 E. M. Magee (to Esso Research and Engineering Co.), Can. Pat., 63r, 882 (Nov. 28, 1961).
4 J. C. Giddings, J. Chromatog., 3 (ig6o) 443.
5 S. Z. Roginsimi, M. I. Yanovsikir and G. A. Gaziev, Kinetika i Kataliz, 3 (igG2) 529.
6 D. W. Bassett and I-I. W. Habgood, J. Phys. Chem., 64 (1960) 769.

7 G. A. Gaziev, V. Yu. Filinovskir And M. I. Yanovskir, Kinetika i Kataliz, 4 (ig63) 688.
8 E. M. Magee, Ind. Eng. Chem., Fundamentals, 2 (1963) 32.
9 IH. Saito, Y. Muraikami and T. Hattori, Kagahu Kogahu, 29 (1965) 585 or in the abridged English edition, Chem. Engineering (Tokyo), 4 (1966) 42.
Io F. E. Gore, Ind. Eng. Chem., Process Dcsign Develot., 6 (r967) 10.
11 M. KOCCrîfu, J. Chromatog., 30 (1967) 459.
12 J. J. Van Deemter, F. J. Zuiderweg and A. Klinkenberg, Chem. Eng. Sci., 5 (1956) 271.
13 T. Kambara, J. Chromatog., 19 (1965) 478.
14 T. Kambara and K. Ozeisi, J. Chvomatog., 2 I (1966) 383.
15 A. J. P. Martin and R. L. M. Synge, Biochem. J., 35 (r94i) 1358.
if J. C. Giddings, in J. C. Giddings and R. A. Keller (Editors), Chromatographic Science Series, Vol. r, Dynamics of Chromatography, Part I, Principles and Theory, Marcel Dekker, New York, 1965, p. 20.
17 L. G. Harrison and Y. Koga, J. Chromatog., 52 (1970) 39.
18 R. Hamming, J. Assoc. Comput. Machin., 6 (1959) 37.
J. Chromatog., 52 (1970) 31-28

